Saturday, 22 April 2017

Graph colouring using backtracking

GRAPH COLOURING:

Given a graph G (V,E) where V represents the vertices in the graph and E represents the edges in the graph . Given  m different colours to colour the nodes in such a way that no two adjacent nodes are of same colour.

eg:
for the given graph

and given two colours yellow and red

there are two solutions possible:






code:
#include<stdio.h>
int GAM[5][5];
int X[5];
int n,m;
int print()
{
    int i,j;
    printf("THE COLOURS OF EACH NODE IS:");
    printf("for node 1\t2\t3\t4\n");
    for(i=1;i<=n;i++)
    {

        printf("%d",X[i]);
        printf("\n");
    }

}
int issafe( int k,int p)
{
    int c;
    for(c=1;c<k;c++)
    {
        if(X[c]==p && GAM[c][k]==1)
            return 0;
    }
   return 1;
}
void graphcolor(int k,int m)
{
    int p;
    for(p=1;p<=m;p++)// p represents colour no
    {
        if(issafe(k,p))//checking if could be coloured or not
         {
            X[k]=p;
            if(k==n)
            print();
            else
                graphcolor(k+1,m);
         }
    }

}

int main()
{

    printf("enter the number of nodes");
    scanf("%d",&n);
    printf("enter 1 if edge exists else 0");
    int i,j;
    for( i=1;i<=n;i++)
        for(j=1;j<=n;j++)
    {
        printf("edge %d->%d",i,j);
        scanf("%d",&GAM[i][j]);

    }
    printf("enter number of colours available");
    scanf("%d",&m);
    graphcolor(1,m);
    return 0;
}

steps involved ;

for solution 1:(solution two similar to this)


No comments:

Post a Comment